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C
urrent environmental risk assessment 
procedures for pesticide registration 
in the EU rely on the comparison 
between exposure and ecotoxicological 

endpoints (surface waters) or a legal threshold 
concentration (groundwater). A tiered approach is 
implemented to concentrate on those compounds 
which might be harmful to the environment and 
not penalise those which pose little environmen-
tal threat. Relevant ecotoxicological endpoints 
are typically derived by laboratory tests using 
a range of representative organisms although 
predictive models such as QSARs (Quantitative 
Structure Activity Relationships) are sometimes 
used in the early stages of the risk assessment. In 
contrast to the derivation of effect concentrations, 
the estimation of Predicted Environmental 
Concentrations for exposure (PEC's) relies heavily 
on the use of predictive environmental fate 
models, especially at higher tiers.

Deterministic models which are most commonly 
used to estimate PEC's for groundwater are 
PELMO, PRZM, PEARL and MACRO. A detailed 
presentation of the capabilities of the different 
models can be found elsewhere (FOCUS, 2000). 
The estimation of the fate of crop protection 
products in surface waters is less harmonised 
at present and a range of approaches are 
used to estimate PEC's, from simple dilution 
calculations through the use of reference data 
(e.g. Ganzelmeier tables for spray drift) to 
deterministic models such as the Dutch model 
TOXSWA. Inputs to a surface water body via soil 
erosion, run-off or drainage can be estimated 

using those leaching models which integrate a 
description of relevant processes.

For surface waters, the ratio between PEC and 
ecotoxicological endpoints is calculated (termed 
TER for Toxicity:Exposure Ratio) and compared 
to threshold values which are dependent on 
the organism considered (typically 10 or 100). 
A compound is considered to pose little threat 
to surface water organisms if the TER exceeds 
the thresholds. These trigger values can be 
considered as safety factors which account in 
part for the uncertainty in the TER itself. For 
groundwater, PEC's are compared to a threshold 
concentration of 0.1 µg a.i./l, irrespective of the 
toxicity and ecotoxicity of the compound.

A schematic representation of the current pes-
ticide registration procedures for assessing the 
risk posed by the product to the environment is 
provided in Figure 1.

Sources of uncertainty in pesticide 
fate modelling
Uncertainty in the modelling of pesticide fate 
in the environment originates from a variety 
of sources. Uncertainty may result from model 
inadequacy (the inability of the model to simulate 
reality even if the models has the right input), 
from variability and uncertainty in the values 
for input parameters or from the infl uence of 
the modeller. 

Most variables measured on samples taken in 
the fi eld are variable in space and in time. These 
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include for instance soil properties (e.g. particle 
size distribution, organic matter content, bulk 
density, soil hydraulic properties) and sorption 
and degradation characteristics of a compound. 
Wood et al. (1987) reported Koc values varying 
from 66 to 1445 l/kg in a 4-ha fi eld (Coeffi cient 
of Variations 17-47%) while Elabd et al. (1986) 
reported a CV of 38% for the Koc of napropamide 
in a 0.6-ha plot. Walker et al. (2001) found 
large variation of isoproturon degradation in 30 
samples taken from a 5-ha fi eld (DT50 6.5 to 
30 days). Apart from natural variations at the 
fi eld scale, variability may arise from the use 
of different sampling techniques in the fi eld, 
differences in sample storage and preparation 
(e.g. frozen vs. refrigerated samples; air dried 
vs. moist samples), the use of different procedu-
res for analytical measurements or different 
environmental conditions in the laboratory.

Signifi cant uncertainty is expected to originate 
from the parameterisation of the model. The 
attribution of values to input parameters may be 
based on the use of data collected in the fi eld 
or in the laboratory, on general relationships 
established by research groups (e.g. pedo-transfer 
functions, QSARs) or on expert judgement (an 
educated decision based on the experience of 
the individual). The derivation of DT50 values 
to be used in the modelling from laboratory 
degradation data is an important step in the 

parameterisation. Leake et al. (1995) used 
a degradation dataset (decrease in pesticide 
concentrations over time) and calculated DT50 
values using a range of equations and fitting 
packages. Resulting DT50 values ranged between 
4 and 93 days (mean 27.9 days; median 21.0 
days). In a recent evaluation exercise (Vanclooster 
et al., 2000), a signifi cant variability in model pre-
dictions was obtained between different modellers 
although they all used the same basic information 
to undertake model parameterisation. 

Uncertainty might also be introduced once 
the model has been run since model output is 
often manipulated (e.g. for comparison with 
experimental data). Finally, decision-making 
based on an identical set of model results might 
be subject to uncertainty. A number of sources 
of uncertainties on the predictions of pesticide 
concentrations in an environmental media are 
rarely acknowledged in the literature. These 
include the infl uence of the selection of a specifi c 
model or the inadequate use of models. All the 
different sources of uncertainty will aggregate as 
the modelling progresses (Figure 2).

Although sources of uncertainty are clearly 
numerous and may affect model predictions 
which are later used in the decision making 
with regard to the placement of crop protection 
products on the market, uncertainty is not taken 
into account in the modelling carried out for 
pesticide registration. Integrating uncertainty in 
modelling can be achieved through a number of 
techniques, the most versatile being the Monte 
Carlo approach. 

Taking uncertainty into account in 
the modelling
The traditional approach to pesticide fate 
modelling is to assign values to each model input 
parameter and to run the model once. In contrast, 
the Monte Carlo approach is based on numerous 
runs of the model. A probability density function 
is attributed to each input parameter to be 
included in the analysis. This refl ects the fact 
that these parameters are considered uncertain 
and can take a range of values. A large number of 
input values for each parameter (say, 1000 values) 
are sampled randomly from the probability 
density functions and these are used to generate 
1000 model input files. The model is run for 
all these input files and model outputs are 
aggregated to enable a presentation of the results 

� Figure 2 – The 
increase in the overall 
uncertainty as model-
ling progresses.
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� Figure 1 – Schema-
tic representation of 
current environmental 
risk assessment pro-
cedures.
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in probabilistic terms. The whole Monte Carlo 
approach is often referred to as “probabilistic 
modelling”. The following sections explain 
technical procedures in more detail.

Selection of parameters
Although including all model parameters in a 
Monte Carlo analysis is technically possible, it is 
not desirable because this would involve a large 
number of model runs and attributing adequate 
probability density functions to each parameter 
would prove diffi cult. Parameters which need 
including in the analysis are those which are 
uncertain and which significantly influence 
model predictions. This latter point is traditionally 
addressed by performing a sensitivity analysis 
for the model. Although performing such an 
analysis for the situation at hand is desirable, 
literature information can also be used. Dubus et 
al. (2000) performed sensitivity analyses for the 
four pesticide leaching models which are used 
for pesticide registration in Europe and identifi ed 
for each model those parameters which most 
infl uence predictions for groundwater recharge 
and pesticide leaching. They found that in 
most model-scenario combinations considered, 
models were most sensitive to parameters related 
to sorption and degradation. An example of 
results for the MACRO model is provided 
in Figure 3, in which input parameters have 
been ranked by decreasing infl uence on model 
predictions. More details including the key to 
parameter names can be found in Dubus & 
Brown (2002).

Attribution of probability distribution 
functions
The attribution of probability density functions 
is a difficult task which is key to the whole 
probabilistic approach. Probability density 
functions which are traditionally assigned to 
input parameters of pesticide leaching models 
are the normal, log-normal, uniform or triangular 
probability distributions. Distribution fi tting on 
the basis of statistical tests can be used where 
data on the variability of parameter values are 
available. If there are no or few data, literature 
information on the expected variation or expert 
judgement may be used.

Sampling and model runs
Monte Carlo sampling into the assigned proba-
bility density functions is carried out to generate 

values for input parameters. The traditional 
Monte Carlo approach to sampling requires a 
large number of samples to cover the parameter 
space. The stratifi ed sampling technique known 
as Latin Hypercube Sampling (LHS) is an effi cient 
sampling alternative which allows the reduction 
of the number of runs. The replacement of 
parameter values in input fi les, the running of 
the model and the extraction of selected model 
output can be easily automated using packages 
such as SENSAN (Doherty, 2000).

Examination of results
Model predictions for each run are ranked and 
displayed in a cumulative distribution function 
(CDF). An example is provided in Figure 4. The 
chart can be used to estimate the probability 
of simulating a concentration above or below 
a particular concentration. In Figure 4, concen-
trations below 0.07 µg/l are predicted in 75% 
of the cases and the probability of the pesticide 
concentration exceeding the threshold of 0.1 µg/l 
is ca. 15%.

Conclusions
Conducting probabilistic modelling using Monte 
Carlo is relatively simple and the approach can 
be transferred to any field of science where 

� Figure 3 – Example 
of sensitivity analysis 
results for the MACRO 
model.
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� Figure 4 – Example 
of probabilistic model-
ling results.
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Abstract

Pesticide fate models play an important role in risk assessment procedures for registration of crop 
protection products both in Europe and in the US. Although sources of uncertainty in pesticide fate 
modelling are numerous, uncertainty is not explicitly taken into account within current procedures for 
registration modelling. The paper briefl y reviews the main sources of variability leading to uncertainty in 
model input parameters and present a Monte Carlo framework for taking uncertainty into account in the 
modelling. The approach is more realistic and transparent than the traditional risk quotient approach and 
is likely to benefi t all stakeholders, from the public through the industry to the regulators.

Résumé

Les modèles de transfert de solutés dans les sols sont largement utilisés dans l’estimation du risque 
environnemental pour les produits de protection des plantes aussi bien dans le contexte européen 
qu’américain. Bien que les sources d’incertitude liées à cette modélisation soient nombreuses, 
l’incertitude n’est pas prise en compte explicitement dans l’approche des Ratios Toxicité/Exposition. 
Cette communication présente les principales sources d’incertitude dans la paramétrisation des 
modèles de transfert et explique les fondements de l’approche Monte Carlo appliquée à l’estimation du 
transfert de pesticides vers les eaux souterraines. L’intégration des incertitudes dans la modélisation 
permet une évaluation du risque plus réaliste et plus transparente. L’adoption de ces méthodes dans 
l’homologation des pesticides en Europe paraît désirable.
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� Figure 5 – Revised risk assessments on the basis of probabilistic modelling. 
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an ecotoxicological endpoint) or to a species 
sensitivity distribution when the information 
is available (Figure 5). Taking uncertainty into 
account provides a more realistic and transpa-
rent assessment of the risk of environmental 
impact compared to the TER approach currently 
implemented in pesticide registration. Decision 
makers have the opportunity to look at the 
wide range of possible outcomes without the 
limitations of the point estimate methods. The 
main limitation of the probabilistic approach is 
that it only considers the uncertainty associated 
with the model input parameters. Other types of 
uncertainty, such as the inability of a model to 
fully represent fi eld data, are ignored.              ❒

models are used. Distributions of exposure 
concentrations generated by probabilistic 
modelling using pesticide leaching models can 
be compared to threshold concentrations (e.g. 
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