Synthesis of the main impacts of coastal realignment on biodiversity – a systematic review
References
- Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, vol. 81, n°2, p. 169‑193. doi:10.1890/10-1510.1
- Boone, L. K., Ollerhead, J., Barbeau, M. A., Beck, A. D., Sanderson, B. G., McLellan, N. R. (2017). Returning the Tide to Dikelands in a Macrotidal and Ice-Influenced Environment : Challenges and Lessons Learned. In: C. W. Finkl & C. Makowski (Éds.), Coastal Wetlands : Alteration and Remediation, vol. 21, p. 705‑749, Springer International Publishing. doi:10.1007/978-3-319-56179-0_21
- Boorman, L. (2003). Saltmarsh Review. An overview of coastal saltmarshes, their dynamic and sensitivity characteristics for conservation and management. JNCC Report, n° 334.
- Bos, D., Boersma, S., Engelmoer, M., Veeneklaas, R. M., Bakker, J. P., Esselink, P. (2014). Utilisation of a coastal grassland by geese after managed re-alignment. Journal of Coastal Conservation, vol. 18, p. 471‑479, doi:10.1007/s11852-014-0333-0
- Bowron, L. B., Neat, N. C, Graham, J. M., Van Proosdij, D., Lundholm, J. (2013). Post-Restoration Monitoring (Year 7) of the Cheverie Creek Salt Marsh Restoration Project. CB Wetlands & Environmental Specialists.
- Chmura, G. L., Burdick, D. M., Moore, G. E. (2012). Recovering Salt Marsh Ecosystem Services through Tidal Restoration. In: C. T. Roman & D. M. Burdick (Éds.), Tidal Marsh Restoration, p. 233‑251, Island Press/Center for Resource Economics, doi:10.5822/978-1-61091-229-7_15
- Collaboration for Environmental Evidence (2018). Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0 (A. S. Pullin, G. K. Frampton, B. Livoreil, & G. Petrokofsky, Éds.), https://environmentalevidence.org/information-for-authors/
- Conservatoire du littoral (2022). Adapto, Vers une gestion souple du trait de côte, https://www.lifeadapto.eu/
- Debue, M., Ouédraogo, D.-Y., Sordello, R., Reyjol, Y. (2021). Quelles sont les principales conséquences de la dépoldérisation sur la biodiversité ? Une approche par revue systématique. Note de synthèse. PatriNat OFB-CNRS-MNHN.
- Debue, M., Ouédraogo, D.-Y., Sordello, R., Reyjol, Y. (2022). Impacts of coastal realignment on biodiversity. A systematic review and meta-analysis. Basic and Applied Ecology, vol. 60, p. 48‑62. doi:10.1016/j.baae.2022.01.009
- Friess, D. A., Spencer, T., Smith, G. M., Möller, I., Brooks, S. M., Thomson, A. G. (2012). Remote sensing of geomorphological and ecological change in response to saltmarsh managed realignment, The Wash, UK. International Journal of Applied Earth Observation and Geoinformation, vol. 18, p. 57‑68. doi:10.1016/j.jag.2012.01.016
- Goeldner-Gianella, L. (2007). Dépoldériser en Europe occidentale De-polderizing in Western Europe. Annales de géographie, n° 656, p. 339-360, doi:10.3917/ag.656.0339
- IUCN (2022). A Global Typology for Earth’s Ecosystems, https://global-ecosystems.org/
- Masselink, G., Hanley, M. E., Halwyn, A. C., Blake, W., Kingston, K., Newton, T., Williams, M. (2017). Evaluation of salt marsh restoration by means of self-regulating tidal gate – Avon estuary, South Devon, UK. Ecological Engineering, vol. 106, p. 174‑190, doi:10.1016/j.ecoleng.2017.05.038
- Matsuda, O., & Kokubu, H. (2016). Reprint of Recent coastal environmental management based on new concept of Satoumi which promotes land-ocean interaction : A case study in Japan. Estuarine, Coastal and Shelf Science, vol. 183, p. 422‑429. doi:10.1016/j.ecss.2016.11.021
- Onaindia, M., Albizu, I., Amezaga, I. (2001). Effect of time on the natural regeneration of salt marsh. Applied Vegetation Science, vol. 4, n° 2, p. 247‑256. doi:10.1111/j.1654-109X.2001.tb00493.x
- Raposa, K. (2002). Early Responses of Fishes and Crustaceans to Restoration of a Tidally Restricted New England Salt Marsh. Restoration Ecology, vol. 10, n° 4, p. 665‑676. doi:10.1046/j.1526-100X.2002.01047.x
- Raposa, K. B. (2008). Early Ecological Responses to Hydrologic Restoration of a Tidal Pond and Salt Marsh Complex in Narragansett Bay, Rhode Island. Journal of Coastal Research, n° 10055, p. 180‑192. doi:10.2112/SI55-015
- Roman, C., Raposa, K., Adamowicz, S., James-Pirri, M., Catena, J. (2002). Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh. Restoration Ecology, vol. 10, n° 3, p. 450-460, doi:10/fmznf8
- Schleuter, D., Daufresne, M., Massol, F., Argillier, C. (2010). A user’s guide to functional diversity indices. Ecological Monographs, vol. 80, n° 3, p. 469‑484. doi:10.1890/08-2225.1
- Sordello, R., Bertheau, Y., Coulon, A., Jeusset, A., Ouédraogo, D. Y., Vanpeene, S., Vargac, M., Villemey, A., Witté, I., Reyjol, Y., Touroult, J. (2019). Les protocoles expérimentaux en écologie. Principaux points clefs. PatriNat, CESCO, Irstea.
- Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., Legendre, F. (2017). Taxonomic bias in biodiversity data and societal preferences. Scientific Reports, 7(1), 9132. doi:10.1038/s41598-017-09084-6
- Underwood, A. J. (1991). Beyond BACI : Experimental designs for detecting human environmental impacts on temporal variations in natural populations. Marine and Freshwater Research, 42(5), p. 569-587. doi:10.1071/MF9910569
Abstract
During the Life project Adapto, a systematic review was conducted to study the consequences of coastal realignment on biodiversity. The present document is a synthesis of this review. It focuses on the characteristics of the sites that have been realigned, in particular on their location, history and type of realignment. The different study designs implemented to study the impact of such an intervention are also presented, highlighting that studies are mainly short-term and are sometimes lacking rigor in the implementation of appropriate experimental designs. Taxonomic groups are unequally studied, vegetation being the most studied one, while mammals, reptiles, amphibians and microorganisms are more rarely considered. Studies also focus on compositional parameters (species richness, abundance) at the detriment of structural (e.g. sex ratio, age distribution.) and functional (e.g. fertility, mortality, etc.) parameters. The review highlighted that coastal realignment generally leads to a decrease in the richness of plants, and an increase in the richness of invertebrates (macrocrustacean excepted) and in the abundance of fishes and shorebirds. Several factors of different types (e.g. biotic, edaphic, anthropic) can explain these results.
No supporting information for this article
Article statistics
Views: 2041