Articles

Temporal trends in freshwater biodiversity

References

  • Alahuhta, J., Erős T., Kärnä, O., Soininen, J., Wang, J., Heino, J. (2019). Understanding Environmental Change through the Lens of Trait-Based, Functional, and Phylogenetic Biodiversity in Freshwater Ecosystems. Environmental Reviews, 27(2), 263‑73, https://doi.org/10.1139/er-2018-0071
  • Buisson, L., Grenouillet, G., Villéger, S., Canal, J., Laffaille, P. (2013). Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biology, 19(2), 387-400, https://doi.org/10.1111/gcb.12056
  • Dézerald, O., Mondy, C. P., Dembski, S., Kreutzenberger, K., Reyjol, Y., Chandesris, A., Valette, L., Brosse, S., Toussaint, A., Belliard, J., Merg, M. L., Usseglio-Polatera, P. (2020). A diagnosis-based approach to assess specific risks of river degradation in a multiple pressure context: insights from fish communities. Science of the Total Environment, 734, 139467, https://doi.org/10.1016/j.scitotenv.2020.139467
  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur‐Richard, A. H., Soto, D., Stiassny, M. L. J., Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, John Wiley & Sons, Ltd 81(02), 163, https://doi.org/10.1017/S1464793105006950
  • Floury, M., Souchon, Y., Looy, K.V. (2017). Climatic and trophic processes drive long-term changes in functional diversity of freshwater invertebrate communities. Ecography, 41(1): 209-218, https://doi.org/10.1111/ecog.02701
  • Union internationale pour la conservation de la nature (2015). The IUCN Red List of Threatened Species. Version 2015.2. www.iucnredlist.org
  • Lamkin, M., & Miller, A. I. (2016). On the challenge of comparing contemporary and deep-time biological-extinction rates. BioScience, 66(9), 785-789, https://doi.org/10.1093/biosci/biw088
  • Magurran, A. E., Deacon, A. E., Moyes, F., Shimadzu, H., Dornelas, M., Phillip, D. A., Ramnarine, I. W. (2018). Divergent biodiversity change within ecosystems. Proceedings of the National Academy of Sciences, 115(8), 1843-1847, https://doi.org/10.1073/pnas.1712594115
  • Magurran, A. E., Dornelas, M., Moyes, F., Henderson, P. A. (2019). Temporal β diversity - A macroecological perspective. Global Ecology and Biogeography, 28(12), 1949-1960, https://doi.org/10.1111/geb.13026
  • Maire, A., Thierry, E., Viechtbauer, W., Daufresne, M. (2019). Poleward shift in large‐river fish communities detected with a novel meta‐analysis framework. Freshwater Biology, 64(6), 1143-1156, https://doi.org/10.1111/fwb.13291
  • Pilotto, F., Kühn, I., R., Alber, R., Alignier, A., Andrews, C., Bäck, J. et al. (2020). Meta-analysis of multidecadal biodiversity trends in europe. Nature Communications, 11(1), http://dx.doi.org/10.1038/s41467-020-17171-y
  • Tison-Rosebery, J., Leboucher, T., Archaimbault, V., Belliard, J., Carayon, D., Ferréol, M., Floury, M., Jeliazkov, A., Tales, E., Villeneuve, B., Passy, S. (2022). Decadal biodiversity trends in freshwater ecosystems reveal recent community rearrangements. Science of the Total Environment, 823, 153431, https://doi.org/10.1016/j.scitotenv.2022.153431
  • Van Looy, K., Floury, M., Ferréol, M., Prieto-Montes, M., Souchon, Y. (2016). Long-term changes in temperate stream invertebrate communities reveal a synchronous trophic amplification at the turn of the millennium. Science of The Total Environment, 565, 481-488, https://doi.org/10.1016/j.scitotenv.2016.04.193
  • Verbeek, L. Gall, A., Hillebrand, H., Striebel, M. (2018). Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Global Change Biology, 24(10), 4532-4543, https://doi.org/10.1111/gcb.14337

Abstract

If there is no doubt that biodiversity declines at a global scale, surprisingly the literature on this topic raises contrasting conclusions about local biodiversity trends. We still have an incomplete understanding of how ecosystems evolve under global change. Here, we aimed to characterize the recent temporal dynamics of river biodiversity in France, from both a taxonomic and a functional point of view, concerning different key organisms (diatoms, macro-invertebrates and fish), with a large range of biodiversity metrics and over a multi-decade period. Our results on sensitive taxa recovery in all three groups provided strong evidence that water quality management in France over the past decades successfully decreased nutrient loads in streams. On the other hand, diatom and to a lesser extent fish richness declined over time, while macroinvertebrate taxonomic richness increased. Finally, the study revealed consistent rearrangements within stream communities, with a shift from planktonic to benthic primary production, resulting in functional changes in macro-invertebrate and fish trait composition.

Authors


Juliette ROSEBERY

Affiliation : INRAE, UR EABX, Cestas Cedex

Country : France


Yorick REYJOL

Affiliation : Office français de la biodiversité (OFB), Vincennes

Country : France


Thibault LEBOUCHER

Affiliation : INRAE, UR EABX, Cestas

Country : France


Virginie ARCHAIMBAULT

Affiliation : Université Paris Saclay, INRAE, UR HYCAR, Antony

Country : France


Jérôme BELLIARD

Affiliation : Université Paris Saclay, INRAE, UR HYCAR, Antony

Country : France


David CARAYON

Affiliation : INRAE, UR ETTIS, Cestas,

Country : France


Martial FERREOL

Affiliation : INRAE, UR RIVERLY, Villeurbanne

Country : France


Alienor JELIAZKOV

Affiliation : Université Paris Saclay, INRAE, UR HYCAR, Antony

Country : France


Évelyne TALÈS

Affiliation : Université Paris Saclay, INRAE, UR HYCAR, Antony

Country : France


Bertrand VILLENEUVE

Affiliation : INRAE, UR ETBX, Cestas

Country : France


Sophia I. PASSY

Affiliation : Université du Texas-Arlington, Département de biologie, Arlington

Country : United States

Attachments

No supporting information for this article

Article statistics

Views: 2641