Construction of a model for estimating the number of lampreys on spawning grounds using a simple nest count
References
- Beaumont, M. A. (2010). Approximate Bayesian Computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41(1), 379406. https://doi.org/10.1146/annurev-ecolsys-102209-144621
- Chang, W., Cheng, J., Allaire, J., Xie, Y., & MvPherson, J. (2015). Package ‘shiny’ (1.7.2) [Logiciel]. http://shiny.rstudio.com/
- Csilléry, K., Blum, M. G. B., Gaggiotti, O. E., & François, O. (2010). Approximate Bayesian Computation (ABC) in practice. Trends in Ecology & Evolution, 25(7), 410418. doi:10.1016/j.tree.2010.04.001
- Dhamelincourt, M., Buoro, M., Rives, J., Sebihi, S., & Tentelier, C. (2021a). Individual and group characteristics affecting nest building in sea lamprey (Petromyzon marinus L. 1758). Journal of Fish Biology, 98(2), 557565. doi:10.1111/jfb.14601
- Dhamelincourt, M., Tentelier, C., & Elosegi, A. (2023). ABC model for estimating sea lamprey local population size using a simple nest count during the spawning season. Knowledge & Management of Aquatic Ecosystems, 424, 5. https://doi.org/10.1051/kmae/2023002
- Funk, W. C., Almeida-Reinoso, D., Nogales-Sornosa, F., & Bustamante, M. R. (2003). Monitoring population trends of Eleutherodactylus frogs. Journal of Herpetology, 37(2), 245256. doi:10.1670/0022-1511(2003)037
- Johnston, C. A., & Windels, S. K. (2015). Using beaver works to estimate colony activity in boreal landscapes. The Journal of Wildlife Management, 79(7), 10721080. doi:10.1002/jwmg.927
- Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences, 14(7), 293300. doi:10.1016/j.tics.2010.05.001
- Lenormand, M., Jabot, F., & Deffuant, G. (2013). Adaptive approximate Bayesian computation for complex models. Computational Statistics, 28(6), 27772796. doi:10.1007/s00180-013-0428-3
- McClintock, B. T., & White, G. C. (2009). A less field-intensive robust design for estimating demographic parameters with Mark-resight data. Ecology, 90(2), 313-320. doi:10.1890/08-0973.1
- Morgan, B. J. T., North, P. M., Ralph, C. J., & Scott, J. M. (1983). Estimating numbers of terrestrial birds. Biometrics, 39(4), 1123. doi:10.2307/2531357
- Schwarz, C. J., & Seber, G. A. F. (1999). Estimating animal abundance: Review III. Statistical Science, 14(4), 427456. https://www.jstor.org/stable/2676809
Abstract
Estimating population size requires taking into account the biology of the species as well as logistical constraints such as human and material costs. Conventional methods based on individual counts provide accurate estimates but are generally difficult to implement. On the other side, methods based on counting cues of presence often do not provide an absolute estimate of the population. One way of overcoming this limit is to find out the relationship between cues and population size. In this paper, we present a model simulating a sea lamprey spawning season and linking individual behaviour and the number of nests built to estimate the number of spawners. The input data for the model is a daily number of nests counted in the field. This model, parametrized from field observation of nesting behaviour, gives realistic population estimates, making it functional as it stands. In addition, it is implemented in an online application easy to use and modify, and requires no coding knowledge. We discuss the possibilities for improvement and adaptation to the constraints encountered in the field in order to make this model suitable for management needs.
No supporting information for this article
Article statistics
Views: 237