Taking account of ecological networks by companies through connectivity modelling with Graphab
References
- Akçakaya, H. R., & Sjögren-Gulve, P. (2000). Population viability analysis in conservation planning: an overview. Ecological Bulletins, 48, 9–21.
- Amsallem, J., Deshayes, M., & Bonnevialle, M. (2010). Analyse comparative de méthodes d’élaboration de trames vertes et bleues nationales et régionales. Sciences Eaux Territoires, (3), 40–45. doi:10.14758/SET-REVUE.2010.3.09
- Bennett, A. F. (2003). Linkages in the Landscape: the role of Corridors and Connectivity in Wildlife Conservation. Gland: International Union for Conservation of Nature. doi:10.2305/IUCN.CH.2004.FR.1.en
- Bergès, L., Roche, P., & Avon, C. (2010). Corridors écologiques et conservation de la biodiversité. Intérêts et limites pour la mise en place de la Trame Verte et Bleue, Sciences Eaux & Territoires. (3), 34–39. doi:10.14758/SET-REVUE.2010.3.08
- Clauzel, C. (2017). Evaluating and Mitigating the Impact of a High-Speed Railway on Connectivity : A Case Study with an Amphibian Species in France. In L. Borda-de-Água, R. Barrientos, P. Beja, & H. M. Pereira (Eds.), Railway Ecology (pp. 215–228). Cham: Springer International Publishing. doi:10.1007/978-3-319-57496-7_13
- Clauzel, C., & Godet, C. (2020). Combining spatial modeling tools and biological data for improved multispecies assessment in restoration areas. Biological Conservation, 250, 15
- Clauzel, C., Eggert, C., Tarabon, S., Pasquet, L., Vuidel, G., Bailleul, M., Miaud, C., & Godet, C. (2023). Analyser la connectivité de la trame turquoise : définition, caractérisation et enjeux opérationnels, Sciences Eaux & Territoires, (43), 67–71. doi:10.20870/Revue-SET.2023.43.7642
- Duflot, R., Avon, C., Roche, P., & Bergès, L. (2018). Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied methodological framework and a species case study. Journal for Nature Conservation, 46, 38–47. doi:10.1016/j.jnc.2018.08.005
- Foltête, J.-C., Clauzel, C., & Vuidel, G. (2012). A software tool dedicated to the modelling of landscape network. Environmental Modelling & Software, 38, 316–327. doi:10.1016/j.envsoft.2012.07.002
- Foltête, J.-C., Girardet, X., & Clauzel, C. (2014). A methodological framework for the use of landscape graphs in land-use planning. Landscape and Urban Planning, 124, 140–150. doi:10.1016/j.landurbplan.2013.12.012
- Galpern, P., Manseau, & M., Fall, A. (2011). Patch-based graphs of landscape connectivity: A guide to construction analysis and application for preservation. Biological Conservation, 144, 44–55. doi:10.1016/j.biocon.2010.09.002
- Girardet, X. (2013). Paysage & infrastructures de transport : modélisation des impacts des infrastructures sur les réseaux écologiques (Doctoral dissertation). Université de Franche-Comté, Besançon. Retrieved from https://theses.hal.science/tel-01336531v1
- Girardet, X., & Clauzel, C. (2018). Graphab. 14 réalisations à découvrir. Actes de la journée « Retour d’expérience sur Graphab » du 27 juin 2017. France, Théma/Ladyss. Retrieved from https://hal.science/hal-01701885v1
- Papet, G., & Vanpeene, S. (2020). Graphes Paysagers et séquence ERC : Comment intégrer les continuités écologiques à la séquence ERC avec les outils de graphes paysagers ? Aix-en-Provence: INRAE-OFB. Retrieved from https://www.trameverteetbleue.fr/documentation/references-bibliographiques/graphes-paysagers-sequence-erc
- Rayfield, B., Fortin, M. J., & Fall, A. (2011). Connectivity for Conservation: A Framework to Classify Network Measures. Ecology, 92, 847–858. doi:10.1890/09-2190.1
- Sawyer, S. C., Epps, C. W., & Brashares, J. S. (2011). Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? Journal of Applied Ecology, 48(3), 668–678. doi:10.1111/j.1365-2664.2011.01970.x
- Sordello, R., Conruyt-Rogeon, G., Merlet, F., Houard, X., & Touroult, J. (2013). Synthèses bibliographiques sur les traits de vie de 39 espèces proposées pour la cohérence nationale de la Trame verte et bleue relatifs à leurs déplacements et besoins de continuité écologique. Paris: Muséum national d’histoire naturelle (MNHN) - Service du Patrimoine naturel (SPN) & Office pour les insectes et leur environnement (Opie). Retrieved from https://www.trameverteetbleue.fr/documentation/references-bibliographiques/syntheses-bibliographiques-sur-traits-vie-39-especes
- Thierry, C. Lesieur-Maquin, N., Fournier, C., Delzons, O., Gourdain, P., & Herard, K. (2020). Comment cartographier l’occupation du sol en vue de modéliser les réseaux écologiques ? Méthodologie générale et cas d’étude en Île-de-France. Sciences Eaux & Territoires, (article hors-série 2020), 1–8. doi:10.14758/SET-REVUE.2020.HS.05
- Thierry, C., Pisanu, B., & Machon, N. (2022). Both landscape and local factors influence plant and hexapod communities of industrial water‐abstraction sites. Ecology And Evolution, 12(2). doi:10.1002/ece3.8365
- Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating landscape resistance to movement: a review. Landscape Ecology, 27(6), 777–797. doi:10.1007/s10980-012-9737-0
Abstract
The fragmentation and destruction of natural habitats resulting from human activities play a major role in the decline in biodiversity. Restoring ecological networks is a good way of limiting these impacts, and companies that manage land are concerned by these issues. This article sets out the methodological choices to be made during the various stages of connectivity modelling using graph theory (with Graphab software), as well as the different contexts in which it can be used for corporate sites. Although connectivity modelling has some limitations, it can be very useful to companies as a decision-making tool for determining development, conservation or management objectives for their sites, with a view to taking better account of ecological networks.
No supporting information for this article
Article statistics
Views: 5643