Plant roots: a lever to modulate the impact of water deficits on crops and to improve water management in agrosystems
References
- Bengough, A. (2012). Water Dynamics of the Root Zone : Rhizosphere Biophysics and Its Control on Soil Hydrology. Vadose Zone Journal, 11(2). doi:10.2136/vzj2011.0111
- Bérard, A., Doussan, C., Guix, N., & Le Gouis, J. (2018). RhyzoPhyMic : Les interactions physiques et biologiques dans la rhizosphère : un rôle à jouer dans la régulation de stockage et fourniture d’eau du sol ? Application à la tolérance aux sécheresses de la microflore et des plantes : Rapport/bilan pour le métaprogramme EcoServ.
- Brisson, N., Gate, P., Gouache, D., Charmet, G., Oury, F., & Huard, F. (2010). Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research, 119(1), 201–212. doi:10.1016/j.fcr.2010.07.012
- Buchmann, C., Steinmetz, Z., Brax, M., Peth, S., & Schaumann, G. E. (2020). Effect of matric potential and soil-water-hydrogel interactions on biohydrogel-induced soil microstructural stability. Geoderma, 362, 114142. doi:10.1016/j.geoderma.2019.114142
- Doussan, C., Seger, M., Chabbi, A., Charrier, X. X., Giot, G., Renard, D., & Cousin, I. I. (2015). RURAC. Mise en évidence de l’évolution temporelle de la réserve utile des sols sous l’action des racines : une première pierre dans une optique de gestion des propriétés hydriques du sol par gestion de la végétation et de son enracinement : Rapport Pari Scientifique INRA - EA. Consulté le 23 mai 2024, à l’adresse https://hal.inrae.fr/hal-02800494
- GIEC. (2021). Changement climatique 2021. Les bases scientifiques physiques. Résumé à l'intention des décideurs. Consulté le 23/05/2024, à l’adresse https://www.unep.org/fr/resources/rapport/changement-climatique-2021-la-base-des-sciences-physiques-la-contribution-du
- Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant And Soil, 321(1‑2), 117–152. doi:10.1007/s11104-008-9885-9
- Le Gall, S., Bérard, A., Page, D., Lanoe, L., Bertin, N., & Doussan, C. (2021). Increased exopolysaccharide production and microbial activity affect soil water retention and field performance of tomato under water deficit. Rhizosphere, 19, 100408. doi:10.1016/j.rhisph.2021.100408
- Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., & Tan, Z. (2020). Root-induced changes of soil hydraulic properties – A review. Journal Of Hydrology, 589, 125203. doi:10.1016/j.jhydrol.2020.125203
- Qiu, J., Shen, Z., Leng, G., & Wei, G. (2021). Synergistic effect of drought and rainfall events of different patterns on watershed systems. Scientific Reports, 11(1). doi:10.1038/s41598-021-97574-z
Abstract
Plants, through their root systems, are soil engineers capable of altering the biological, chemical and physical properties of the soil they colonize. However, while soil properties are generally well considered for their impact on plants (water/nutrient uptake, growth and yield), the plant action on soil properties through its root system, and the feedback loop, are much less investigated. A large part of these plant-soil interactions takes place in the rhizosphere: the small zone of soil surrounding the roots impacted by their activity, which is a hotspot of biological activity sustained by the supply of carbon by roots (exudates, mucilage) comprising specific polymeric compounds. We here argue that the root/rhizosphere effect on the soil could be a lever for acting on crop tolerance to water deficit, showing a few examples of our recent works. More globally, considering cropping systems and rotations, root systems could be a tool for managing soil hydraulic properties in the view of optimizing the water balance at the field level (runoff/infiltration partition, soil water storage, drainage and groundwater recharge).
Attachments
No supporting information for this articleArticle statistics
Views: 4435