Articles

Can environmental DNA be used for quantitative monitoring of migratory fish populations?

References

  • André, G., Guillerme, N., Sauvadet, C., Diouach, O., Chapon, P. M. & Beaulaton, L. (2018). Synthèse sur la répartition des lamproies et des aloses amphihalines en France [PhD Thesis, AFB; INRA]. https://hal.science/hal-03006782/
  • Atkinson, S., Carlsson, J. E., Ball, B., Egan, D., Kelly-‐Quinn, M., Whelan, K., & Carlsson, J. (2018). A quantitative PCR-based environmental DNA assay for detecting Atlantic salmon (Salmo salar L.). Aquatic Conservation Marine And Freshwater Ecosystems, 28(5), 1238‑1243. https://doi.org/10.1002/aqc.2931
  • Beentjes, K. K., Speksnijder, A. G. C. L., Schilthuizen, M., Hoogeveen, M., & Van Der Hoorn, B. B. (2019). The effects of spatial and temporal replicate sampling on eDNA metabarcoding. PeerJ, 7, e7335. https://doi.org/10.7717/peerj.7335
  • Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R. A., Foster, J., Wilkinson, J. W., Arnell, A., Brotherton, P., Williams, P., & Dunn, F. (2015). Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation, 183, 19‑28. https://doi.org/10.1016/j.biocon.2014.11.029
  • Blackman, R., Couton, M., Keck, F., Kirschner, D., Carraro, L., Cereghetti, E., Perrelet, K., Bossart, R., Brantschen, J., Zhang, Y., & Altermatt, F. (2024). Environmental DNA : The next chapter. Molecular Ecology, 33(11). https://doi.org/10.1111/mec.17355
  • Capo, E., Spong, G., Norman, S., Königsson, H., Bartels, P., & Byström, P. (2019). Droplet digital PCR assays for the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) from environmental DNA collected in the water of mountain lakes. PLoS ONE, 14(12), e0226638. https://doi.org/10.1371/journal.pone.0226638
  • Hindson, C. M., Chevillet, J. R., Briggs, H. A., Gallichotte, E. N., Ruf, I. K., Hindson, B. J., Vessella, R. L., & Tewari, M. (2013). Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 10(10), 1003‑1005. https://doi.org/10.1038/nmeth.2633
  • Merg, M., Dézerald, O., Kreutzenberger, K., Demski, S., Reyjol, Y., Usseglio-Polatera, P., & Belliard, J. (2020). Modeling diadromous fish loss from historical data : Identification of anthropogenic drivers and testing of mitigation scenarios. PLoS ONE, 15(7), e0236575. https://doi.org/10.1371/journal.pone.0236575
  • Pawlowski, J., Bonin, A., Boyer, F., Cordier, T., & Taberlet, P. (2021). Environmental DNA for biomonitoring. Molecular Ecology, 30(13), 2931‑2936. https://doi.org/10.1111/mec.1602
  • PNMA. (2022). Plan National en faveur des Migrateurs Amphihalins. Version du 11 février 2022. Ministère de la Transition Écologique. https://professionnels.ofb.fr/sites/default/files/pdf/PNMA_Projet-Approuve_11_02_2022_VDD.pdf
  • Rourke, M. L., Fowler, A. M., Hughes, J. M., Broadhurst, M. K., DiBattista, J. D., Fielder, S., Walburn, J. W., & Furlan, E. M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass : A review of approaches and future considerations for resource surveys. Environmental DNA, 4(1), 9‑33. https://doi.org/10.1002/edn3.185
  • Takahara, T., Taguchi, J., Yamagishi, S., Doi, H., Ogata, S., Yamanaka, H., & Minamoto, T. (2020). Suppression of environmental DNA degradation in water samples associated with different storage temperature and period using benzalkonium chloride. Limnology And Oceanography Methods, 18(8), 437‑445. https://doi.org/10.1002/lom3.10374
  • Thalinger, B., Rieder, A., Teuffenbach, A., Pütz, Y., Schwerte, T., Wanzenböck, J., & Traugott, M. (2021). The Effect of Activity, Energy Use, and Species Identity on Environmental DNA Shedding of Freshwater Fish. Frontiers In Ecology And Evolution, 9. https://doi.org/10.3389/fevo.2021.623718
  • Urban, P., Bekkevold, D., Hansen, B. K., Jacobsen, M. W., Nielsen, A., & Nielsen, E. E. (2022). Using eDNA to estimate biomass of bycatch in pelagic fisheries. Environmental DNA, 6(1). https://doi.org/10.1002/edn3.377
  • Yates, M. C., Furlan, E., Thalinger, B., Yamanaka, H., & Bernatchez, L. (2023). Beyond species detection—leveraging environmental DNA and environmental RNA to push beyond presence/absence applications. Environmental DNA, 5(5), 829‑835. https://doi.org/10.1002/edn3.459

Abstract

Amphihaline migratory fish are facing alarming declines due to anthropogenic and environmental pressures. In this context, environmental DNA (eDNA) emerges as a promising non-invasive approach to complement traditional population monitoring methods. We developed and validated species-specific genetic markers that enable the unambiquous detection and identification of five iconic migratory fish species (brown trout, Atlantic salmon, sea lamprey, European eel, and Alosa spp.). The aim was to assess whether the eDNA detected in water could reliably reflect the abundances measured at river counting stations. The results show effective detection for certain species and contexts but with significant variability depending on the markers and environmental conditions (temperature, turbidity, flow). For example, in the Adour River, peaks in eDNA concentrations were observed a few weeks after the migration peaks of trout and Alosa spp. Water temperature appears to play a major role in the release and persistence of eDNA, with optimal eDNA concentrations obtained at intermediate temperature ranges (around 18°C). In contrast, flow variations, especially in spring, seem to reduce species detectability due to eDNA dilution. This study represents an important step in integrating eDNA as a complementary tool to traditional monitoring methods for amphihaline migratory fish, particularly for species that are poorly documented at the national level. However, the complexity of the transport and degradation processes of DNA in aquatic environnements - still only partially understood - and the significant variability between river systems, call for continued research over several years to optimize sampling and analysis protocols, and to accurately integrate environmental parameters into reliable predictive models.

Authors


Erwan QUÉMÉRÉ

erwan.quemere@inrae.fr

Affiliation : DECOD (Dynamique et Durabilité des Ecosystèmes), L’Institut Agro, IFREMER, INRAE, Rennes

Country : France


Zoé RAPHALEN

Affiliation : DECOD (Dynamique et Durabilité des Ecosystèmes), L’Institut Agro, IFREMER, INRAE, Rennes

Country : France


Anne-Laure BESNARD

Affiliation : DECOD (Dynamique et Durabilité des Ecosystèmes), L’Institut Agro, IFREMER, INRAE, Rennes

Country : France


Marine VAUTIER

Affiliation : UMR CARRTEL, INRAE, Université Savoie Mont Blanc, Thonon-les-Bains Cedex

Country : France


Natacha NIKOLIC

Affiliation : ECOBIOP, Université de Pau et des Pays de l’Adour, INRAE, Saint-Pée-sur-Nivelle / Université de Toulouse III Paul Sabatier, CRBE, CNRS, IRD, Toulouse

Country : France

Article statistics

Views: 301