Articles

Estimating scouring in meanders: which formulas for which context? Application to riverbank stabilisation using soil and water bioengineering

References

  • AMEC. (2012). Design guidelines for erosion and flood control projects for streambank and riparian stability restoration. The City of Calgary, Water Resources, Calgary, Alberta.
  • Bagnold, R. (1960). Some aspects of the shape of river meanders. USGS Professional Paper. https://doi.org/10.3133/pp282e
  • Baird, D. C., Fotherby, L., Klumpp, C. C., & Sculock, S. M. (2015). Bank Stabilization Design Guidelines (SRH-2013-25). Bureau of reclamation, Technical Service Center.
  • Bates, P. D. (2022). Flood Inundation Prediction. Annual Review of Fluid Mechanics, 54(1), 287-315. doi:10.1146/annurev-fluid-030121-113138
  • Blanchet, C., & Morin, E. (1990). Les affouillements et la protection des berges dans les coudes des rivières à fond mobile. Rapport de synthèse SOGREAH.
  • Bonin, L., Evette, A., Frossard, P. A., Prunier, P., Roman, D., & Vale, N. (2013). Génie végétal en rivière de montagne. Connaissances et retours d’expériences sur l’utilisation d’espèces et de techniques végétales : végétalisation de berges et ouvrages bois. 321. https://hal.science/hal-02598614/
  • Edmaier, K., Burlando, P., & Perona, P. (2011). Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment. Hydrology and Earth System Sciences, 15(5), 1615‑1627. https://doi.org/10.5194/hess-15-1615-2011
  • Fructus, N., Leblois, S., Piton, G., Recking, A., Evette, A., & Pezet, F. (2025). Feuille de calcul pour l’application des formules d’affouillement en méandre. Recherche Data Gouv. https://doi.org/10.57745/7GW494.
  • Gray, D. H., & Sotir, R. B. (1996). Biotechnical and soil bioengineering slope stabilization : A practical guide for erosion control. John Wiley & Sons.
  • Gyssels, G., Poesen, J., Bochet, E., & Li, Y. (2005). Impact of plant roots on the resistance of soils to erosion by water : A review. Progress in Physical Geography: Earth and Environment, 29(2), 189‑217. https://doi.org/10.1191/0309133305pp4
  • Jaymond, D., Evette, A., Bray, F., Leblois, S., Jung, D., Vivier, A., & Dorget, C. (2021). BD GeniVeg : une base de données française sur les ouvrages de protection de berges en génie végétal. Sciences Eaux & Territoires, (Articles hors-série 2021), 1-6. doi:10.14758/set-revue.2021.HS.07
  • Julien, P. Y. (2018). River mechanics. Cambridge University Press. Cambridge, UK.
  • Leblois, S., Evette, A., Favier, G., & Recking, A. (2016). Amélioration des méthodes de dimensionnement des ouvrages de génie végétal en berges de cours d’eau par une approche empirique. Sciences Eaux & Territoires, (Articles hors-série 2016), 1-7. doi:10.14758/SET-REVUE.2016.HS.05
  • Leblois, S., Evette, A., Jaymond, D., Piton, G., & Recking, A. (2022). Processus et causes de défaillance du génie végétal pour la stabilisation des berges de rivière : Retour d’expérience sur un large jeu de données issues de la BD GeniVeg. Géomorphologie : relief, processus, environnement, 28(2), 105‑120. https://doi.org/10.4000/geomorphologie.16954
  • Leblois, S., Piton, G., Recking, A., Jaymond, D., Buffet, A., & Evette, A. (2024). Riverbank fascines mostly fail due to scouring : Consistent evidence from field and flume observations. River Research and Applications, 41(1), 108-119. doi:10.1002/rra.4356
  • Lefort, P. (2018). Morphodynamique fluviale. Approches théorique et expérimentale. Presses Ponts Et Chaussées.
  • Matsuura, T. (2004). Stream-bank protection in narrow channel bends using ‘barbs’ : A laboratory study. Doctoral dissertation, Université D’Ottawa. doi:10.20381/ruor-9755
  • Odgaard, A. J. (1989). River-meander model. I : Development. Journal of Hydraulic Engineering, 115(11), 1433‑1450. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:11(1433)
  • Papanicolaou, A. N., Elhakeem, M., & Hilldale, R. (2007). Secondary current effects on cohesive river bank erosion. Water Resources Research, 43(12). doi:10.1029/2006WR005763
  • Somsook, K., Duka, M. A., Olap, N. A., Casila, J. C. C., & Yokoyama, K. (2020). Direct measurement of secondary circulation in a meandering macrotidal estuary. Science of The Total Environment, 739, 139503. doi:10.1016/j.scitotenv.2020.139503
  • Thorne, C. R. (1982). Processes and Mechanisms of River Bank Erosion. Dans R.D. Hey, J.C. Bathurst, & C.R. Thorne (dirs.), Gravel-bed Rivers: Fluvial Processes, Engineering and Management (pp. 227-271). John Wiley and Sons Ltd.
  • Thorne, C. R. (1997). Channel Types and Morphological Classification. Dans C.R. Thorne, R.D. Hey, & M.D. Newson (dirs.) Applied fluvial geomorphology for river engineering and management (pp. 175-222). John Wiley and Sons Ltd.
  • USDA, & NRCS. (2007a). Chapter 6 - Stream hydraulics. Dans National Engineering Handbook, Part 654 Stream restoration Design.
  • USDA, & NRCS. (2007b). Technical Supplement 14B - Scour Calculations. Dans National Engineering Handbook, Part 654 Stream restoration Design.
  • USDA, & NRCS. (2007c). Chapter 14 - Treatment technique Design. Dans National Engineering Handbook, Part 654 Stream restoration Design.
  • Vollsinger, S., Doppler, F., & Florineth, F. (2000). Ermittlung des Stabilitätsverhaltens von Ufergehölzen im Zusammenhang mit Erosionsprozessen an Wildbächen. Studie im Auftrag des Bundesministeriums für Land-und Forstwirtschaft. Eigenverlag Universität für Bodenkultur Wien. Institut für Ingenieurbiologie und Landschaftsbau.

Abstract

Erosion is essential to the proper functioning of watercourses. However, when the assets are high and cannot be moved, it may be necessary to fix the banks with protective structures. In addition to offering a degree of resilience in the face of flood and landslide hazards, soil and water bioengineering techniques have the advantage over civil engineering of preserving or enhancing biodiversity and associated ecosystem services. In practice, these techniques are mainly designed empirically by experts and promoted by feedback analyses. This study focuses on the phenomenon of meander scouring, a key process leading to the destabilization of these structures. An analysis of the existing literature has resulted in the compilation of eleven formulas, each offering a method for estimating scour depth. Their respective fields of application cover a wide spectrum of hydromorphological contexts where meanders may be present. This article presents a summary of the formulas listed, their origins, specific features and limits of application. A calculation tool, available online (Fructus et al., 2025), for applying the formulas, supplements it. Estimated scour depths, always coupled with field observations, enable a more informed and qualitative design of soil and water bioengineering structures implemented in meanders. To limit the effects of scouring on the structures, it is then possible to adjust the structure bottom level and anchoring technique, for example by modifying the length of the fascine piles, or by creating dead-wood structures underneath the lowest level of bank shrubby vegetation recovery.

Authors


Natacha FRUCTUS

natacha.fructus@inrae.fr

Affiliation : Univ. Grenoble Alpes, INRAE, UR LESSEM, 2 rue de la papeterie BP 76, 38402 Saint-Martin-d’Hères / Chaire Oxalia – Fondation Grenoble INP, 46 Avenue Félix Viallet, 38000 Grenoble

Country : France


Solange LEBLOIS

Affiliation : Univ. Grenoble Alpes, INRAE, UR LESSEM, 2 rue de la papeterie BP 76, 38402 Saint-Martin-d’Hères / Suez Consulting, 48 avenue du Lac du Bourget, 73051, Le Bourget-du-Lac

Country : France


Guillaume PITON

Affiliation : Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38400 Grenoble

Country : France


Alain RECKING

Affiliation : Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38400 Grenoble

Country : France


André EVETTE

Affiliation : Univ. Grenoble Alpes, INRAE, UR LESSEM, 2 rue de la papeterie BP 76, 38402 Saint-Martin-d’Hères

Country : France


Florent PEZET

Affiliation : Suez Consulting, 48 avenue du Lac du Bourget, 73051, Le Bourget-du-Lac

Country : France

No supporting information for this article

Article statistics