Articles

The contribution of remote sensing to characterising irrigated areas and water withdrawals for irrigation

References

  • Abubakar, M., Chanzy, A., Pouget, G., Flamain, F., & Courault, D. (2022). Detection of irrigated permanent grasslands with sentinel-2 based on temporal patterns of the leaf area index (LAI). Remote Sensing, 14(13), 3056. doi:10.3390/rs14133056
  • Baghdadi, N., Bazzi, H., El Hajj, M., & Zribi, M. (2019). Analysis of Sentinel-1 derived soil moisture maps over Occitanie, South France. In "IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium", pp. 6275-6278. IEEE. doi:10.1109/IGARSS.2019.8899078
  • Bailleux, A., Olioso, A., Trolard, F., Chanzy, A., Lecerf, R., Lecharpentier, P., Ruget, F., & Ruy, S. (2015). Changements globaux : quels impacts sur l’aquifère de la crau ? Revue Société géologique de France : géologues, numéro 187, Revue Société géologique de France : géologues, numéro 187, ISSN0016.7916, 6 p.
  • Bazzi, H., Baghdadi, N., El Hajj, M., Zribi, M., Minh, D. H. T., Ndikumana, E., Courault, D., & Belhouchette, H. (2019a). Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sensing 11. https://doi.org/10.3390/rs11070887
  • Bazzi, H., Baghdadi, N., Ienco, D., El Hajj, M., Zribi, M., Belhouchette, H., Escorihuela, M. J., & Demarez, V. (2019b). Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain. Remote Sensing 11. https://doi.org/10.3390/rs11151836
  • Bazzi, H., Baghdadi, N., Fayad, I., Charron, F., Zribi, M., & Belhouchette, H. (2020a). Irrigation events detection over intensively irrigated grassland plots using Sentinel-1 data. Remote Sensing 12, 4058. doi:10.3390/rs12244058
  • Bazzi, H., Baghdadi, N., Fayad, I., Zribi, M., Belhouchette, H., & Demarez, V. (2020b). Near real-time irrigation detection at plot scale using sentinel-1 data. Remote Sensing 12, 1456. doi:10.3390/rs12091456
  • Bazzi, H., Baghdadi, N., Amin, G., Fayad, I., Zribi, M., Demarez, V., & Belhouchette, H. (2021). An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data. Remote Sensing 13, 2584. doi:10.3390/rs13132584
  • Bazzi, H., Baghdadi, N., Najem, S., Jaafar, H., Le Page, M., Zribi, M., Faraslis, I., & Spiliotopoulos, M. (2022). Detecting irrigation events over semi-arid and temperate climatic areas using Sentinel-1 data: case of several summer crops. Agronomy 12, 2725. doi:10.3390/agronomy12112725
  • Bazzi, H., & Baghdadi, N. (2024). Irrigation Monitoring Using High Spatial and Temporal Resolutions Remote Sensing Time Series. Multitemporal Earth Observation Image Analysis: Remote Sensing Image Sequences, 123-149.
  • Brochet, E., Grusson, Y., Sauvage, S., Lhuissier, L., & Demarez, V. (2024). How to account for irrigation withdrawals in a watershed model. Hydrology and Earth System Sciences, 28(1), 49-64. doi:10.5194/hess-28-49-2024,
  • Courault, D., Le Page, M., Jarlan, L., & Khabba, S. (2020). Quels sont les capteurs et les méthodes disponibles en télédétection pour aider à la gestion de l’eau. L’eau en milieu agricole, Éditions Quae.
  • Delenne, C., Bailly, J. S., Rousseau, A., Hostache, R., & Boutron, O. (2021). Endorheic waterbodies delineation from remote sensing as a tool for immersed surface topography. IEEE Geoscience and Remote Sensing Letters 19, 1-5. doi:10.1109/LGRS.2021.3079718
  • Demarez, V., Helen, F., Marais-Sicre, C., and Baup, F. (2019). In-Season Mapping of Irrigated Crops Using Landsat 8 and Sentinel-1 Time Series. Remote Sensing 11. https://doi.org/10.3390/rs11020118
  • El Hajj, M., Baghdadi, N., Belaud, G., Zribi, M., Cheviron, B., Courault, D., & Charron, F. (2014). Irrigated grassland monitoring using a time series of TerraSAR-X and COSMO-SkyMed X-band SAR data, Remote Sensing, vol. 6, pp. 10002-10032. https://doi.org/10.3390/rs61010002
  • Gallego-Elvira, B., Olioso, A., Mira, M., Reyes-Castillo, S., Boulet, G., Marloie, O., Garrigues, S., Courault, D., Weiss, M., Chauvelon, P., & Boutron, O. (2013). EVASPA (EVapotranspiration Assessment from SPAce) tool: An overview. Four Decades of Progress in Monitoring and Modeling of Processes in the Soil-Plant-Atmosphere System. Applications and Challenges 19, 303-310. https://doi.org/10.1016/j.proenv.2013.06.035
  • Hamze, M., Cheviron, B., Baghdadi, N., Lo, M., Courault, D., & Zribi, M. (2023a). Detection of irrigation dates and amounts on maize plots from the integration of Sentinel-2 derived Leaf Area Index va& lues in the Optirrig crop model. Agricultural Water Management, 283, 108315. doi:10.1016/j.agwat.2023.108315
  • Hamze, M., Cheviron, B., Baghdadi, N., Courault, D., & Zribi, M. (2023b). Plot-Scale Irrigation Dates and Amount Detection Using Surface Soil Moisture Derived from Sentinel-1 SAR Data in the Optirrig Crop Model. Remote Sensing 15, 4081. doi:10.3390/rs15164081
  • Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., Bontemps, S., Defourny, P., & Koetz, B. (2015). Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sensing 7, 12356-12379. doi:10.3390/rs70912356
  • Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture 139, 22-32. doi:10.1016/j.compag.2017.05.001
  • Le Page, M., Toumi, J., Khabba, S., Hagolle, O., Tavernier, A., Kharrou, M. H., ... & Jarlan, L. (2014). A life-size and near real-time test of irrigation scheduling with a sentinel-2 like time series (SPOT4-Take5) in Morocco. Remote Sensing, 6(11), 11182-11203. doi:10.3390/rs61111182
  • Molero, B., Merlin, O., Malbéteau, Y., Al Bitar, A., Cabot, F., Stefan, V., Kerr, Y., Bacon, S., Cosh, M., & Bindlish, R. (2016). SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results. Remote Sensing of Environment 180, 361-376. doi:10.1016/j.rse.2016.02.045
  • Orieschnig, C. A., Belaud, G., Venot, J. P., Massuel, S., & Ogilvie, A. (2021). Input imagery, classifiers, and cloud computing: Insights from multi-temporal LULC mapping in the Cambodian Mekong Delta. European Journal of Remote Sensing, 54(1), 398-416. doi:10.1080/22797254.2021.1948356
  • Pageot, Y., Baup, F., Inglada, J., Baghdadi, N., & Demarez, V. (2020). Detection of irrigated and rainfed crops in temperate areas using Sentinel-1 and Sentinel-2 time series. Remote Sensing 12, 3044. doi:10.3390/rs12183044
  • Ren, J., Shao, Y., Wan, H., Xie, Y., & Campos, A. (2021). A two-step mapping of irrigated corn with multi-temporal MODIS and Landsat analysis ready data. ISPRS Journal of Photogrammetry and Remote Sensing, 176, 69-82. doi:10.1016/j.isprsjprs.2021.04.007
  • Roujean, J. L., Bhattacharya, B., Gamet, P., Pandya, M., Boulet, G., Olioso, A., Singh, S., Shukla, M., Mishra, M., & Babu, S. (2021). TRISHNA: an Indo-French space mission to study the thermography of the earth at fine spatio-temporal resolution. In "2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS)", pp. 49-52. IEEE. doi:10.1109/InGARSS51564.2021.9791925
  • Simonneaux, V., Le Page, M., Helson, D., Metral, J., Thomas, S., Duchemin, B., ... & Chehbouni, G. (2009). Estimation spatialisée de l'Evapotranspiration des cultures irriguées par télédétection. Application à la gestion de l'Irrigation dans la plaine du Haouz (Marrakech, Maroc). Science et changements planétaires/Sécheresse, 20(1), 123-130. https://ird.hal.science/ird-00389327v1
  • Trolard, F., Alcazar, C., Bailleux, A., Bourrié, G., Chanzy, A., Cognard, A. L, Courault, D., Guillon, M., Olioso, A., Ruy, S. (2020). Influence des changements globaux sur l’évolution quantitative des ressources en eau en plaine de Crau. Chapitre 20 in Leenhardt D, Voltz M, Barreteau O, L’eau en milieu agricole. Outils et méthodes pour une gestion intégrée et territoriale, Versailles, Éditions Quae, 288 p, (coll synthèses ouvrage) ISTE INRA, pp. 261-270.
  • Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote sensing of environment 236, 111402. doi:10.1016/j.rse.2019.111402

Abstract

Remote sensing offers extensive spatial and temporal coverage, enhancing our understanding of crop water requirements. Various water-related variables are now freely available, enabling the monitoring of crop types, soil moisture and plant cover dynamic. However, annual maps of irrigated areas remain scarce, although promising methods are emerging. Estimates of irrigation dates and volumes of water applied are also still in the research phase. This article outlines progress on these issues.
Satellite imagery, such as that provided by the THEIA platform, offers regular updates of landuse maps, identifying 24 classes across France and its overseas territories. By 2026, ongoing projects aim to im-prove the frequency and accuracy of these maps. For irrigated areas, vegetation indices and radar data can be used to map irrigated crops, albeit with varying degrees of accuracy. Finally, approaches that combine remote sensing data and agro-hydrological models show significant potential for agricultural water management, despite ongoing challenges.

Authors


Dominique COURAULT

dominique.courault@inrae.fr

Affiliation : UMR EMMAH, INRAE-Avignon Université, 84914 Avignon

Country : France


Gilles BELAUD

Affiliation : G-EAU, INRAE, AgroParisTech, Cirad, IRD, Montpellier SupAgro, Univ Montpellier, 34196 Montpellier Cedex 5

Country : France


Valérie DEMAREZ

Affiliation : CESBIO, 31401 Toulouse Cedex 9

Country : France


Nicolas BAGHDADI

Affiliation : UMR TETIS, AgroParisTech, CIRAD, CNRS, INRAE, 34196 Montpellier Cedex 5

Country : France


Jean--Stéphane BAILLY

Affiliation : UMR LISAH, Univ. Montpellier, AgroParisTech, INRAE, Institut Agro, IRD, 34060 Montpellier Cedex 5

Country : France

Attachments

No supporting information for this article

Article statistics

Views: 134